0=15t^2-120t-190

Simple and best practice solution for 0=15t^2-120t-190 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=15t^2-120t-190 equation:


Simplifying
0 = 15t2 + -120t + -190

Reorder the terms:
0 = -190 + -120t + 15t2

Solving
0 = -190 + -120t + 15t2

Solving for variable 't'.

Combine like terms: 0 + 190 = 190
190 + 120t + -15t2 = -190 + -120t + 15t2 + 190 + 120t + -15t2

Reorder the terms:
190 + 120t + -15t2 = -190 + 190 + -120t + 120t + 15t2 + -15t2

Combine like terms: -190 + 190 = 0
190 + 120t + -15t2 = 0 + -120t + 120t + 15t2 + -15t2
190 + 120t + -15t2 = -120t + 120t + 15t2 + -15t2

Combine like terms: -120t + 120t = 0
190 + 120t + -15t2 = 0 + 15t2 + -15t2
190 + 120t + -15t2 = 15t2 + -15t2

Combine like terms: 15t2 + -15t2 = 0
190 + 120t + -15t2 = 0

Factor out the Greatest Common Factor (GCF), '5'.
5(38 + 24t + -3t2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(38 + 24t + -3t2)' equal to zero and attempt to solve: Simplifying 38 + 24t + -3t2 = 0 Solving 38 + 24t + -3t2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -12.66666667 + -8t + t2 = 0 Move the constant term to the right: Add '12.66666667' to each side of the equation. -12.66666667 + -8t + 12.66666667 + t2 = 0 + 12.66666667 Reorder the terms: -12.66666667 + 12.66666667 + -8t + t2 = 0 + 12.66666667 Combine like terms: -12.66666667 + 12.66666667 = 0.00000000 0.00000000 + -8t + t2 = 0 + 12.66666667 -8t + t2 = 0 + 12.66666667 Combine like terms: 0 + 12.66666667 = 12.66666667 -8t + t2 = 12.66666667 The t term is -8t. Take half its coefficient (-4). Square it (16) and add it to both sides. Add '16' to each side of the equation. -8t + 16 + t2 = 12.66666667 + 16 Reorder the terms: 16 + -8t + t2 = 12.66666667 + 16 Combine like terms: 12.66666667 + 16 = 28.66666667 16 + -8t + t2 = 28.66666667 Factor a perfect square on the left side: (t + -4)(t + -4) = 28.66666667 Calculate the square root of the right side: 5.354126135 Break this problem into two subproblems by setting (t + -4) equal to 5.354126135 and -5.354126135.

Subproblem 1

t + -4 = 5.354126135 Simplifying t + -4 = 5.354126135 Reorder the terms: -4 + t = 5.354126135 Solving -4 + t = 5.354126135 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + t = 5.354126135 + 4 Combine like terms: -4 + 4 = 0 0 + t = 5.354126135 + 4 t = 5.354126135 + 4 Combine like terms: 5.354126135 + 4 = 9.354126135 t = 9.354126135 Simplifying t = 9.354126135

Subproblem 2

t + -4 = -5.354126135 Simplifying t + -4 = -5.354126135 Reorder the terms: -4 + t = -5.354126135 Solving -4 + t = -5.354126135 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + t = -5.354126135 + 4 Combine like terms: -4 + 4 = 0 0 + t = -5.354126135 + 4 t = -5.354126135 + 4 Combine like terms: -5.354126135 + 4 = -1.354126135 t = -1.354126135 Simplifying t = -1.354126135

Solution

The solution to the problem is based on the solutions from the subproblems. t = {9.354126135, -1.354126135}

Solution

t = {9.354126135, -1.354126135}

See similar equations:

| -8(3b+2)+(25b-1)=0 | | 2(x-8)=4x | | 0=-.0001x^2+.4x | | t^2-17=0 | | 2x^3=-54 | | 0.4n+12.3=4.5n | | 4x^2+5x+6=8x | | 9p+4=12+8p | | x+20-5=25 | | 5(x-2)=2x+5 | | r-21=-28 | | -3x+7=-3x-6 | | 17x-13=6x+4 | | 11-6x=18-5x | | x-15+3=7 | | -3x+2=-2x-11 | | 3+3(x-2)=10-4(x-5) | | 5x^2+8-69=0 | | x+5=9+3 | | x-3=22 | | 2x+3+4(4x-3)=58+3(-35+5) | | 9x+6=7x+46 | | 17x+35=120 | | 17k+17=66 | | ln(4x)+ln(x)=6 | | 5-4[3-(2y-2)]= | | 32ac+21b^2-28ab-24bc= | | 32ac+21b-28ab-24bc= | | 2ln(x+2)=-2x+10 | | 8.6x+1-4.6x=9 | | (6-i)-(9+2i)= | | 6v^2+11v-2=0 |

Equations solver categories